Nearest neighbor and validity-based clustering
نویسندگان
چکیده
منابع مشابه
Clustering-based Nearest Neighbor Searching
This paper proposes a Clustering-based Nearest Neighbor Search algorithm (CNNS) for high dimensional data. Different from existing approaches that are based on rigid-grid partition to develop data access structure, CNNS creates indexing structures according to data inherent distribution, with help of a progressive-styled clustering operation. The grids produced in this way adapt to data natural...
متن کاملNearest Neighbor Clustering
Clustering is often formulated as a discrete optimization problem: given a finite set of sample points, the objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sam...
متن کاملNearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner
Unsupervised anomaly detection is the process of finding outlying records in a given dataset without prior need for training. In this paper we introduce an anomaly detection extension for RapidMiner in order to assist non-experts with applying eight different nearest-neighbor and clustering based algorithms on their data. A focus on efficient implementation and smart parallelization guarantees ...
متن کاملFast PNN-based Clustering Using K-nearest Neighbor Graph
Search for nearest neighbor is the main source of computation in most clustering algorithms. We propose the use of nearest neighbor graph for reducing the number of candidates. The number of distance calculations per search can be reduced from O(N) to O(k) where N is the number of clusters, and k is the number of neighbors in the graph. We apply the proposed scheme within agglomerative clusteri...
متن کاملSpectral Clustering Based on k-Nearest Neighbor Graph
Finding clusters in data is a challenging task when the clusters differ widely in shapes, sizes, and densities. We present a novel spectral algorithm Speclus with a similarity measure based on modified mutual nearest neighbor graph. The resulting affinity matrix reflex the true structure of data. Its eigenvectors, that do not change their sign, are used for clustering data. The algorithm requir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Fuzzy Logic and Intelligent Systems
سال: 2004
ISSN: 1598-2645
DOI: 10.5391/ijfis.2004.4.3.337